arXiv Analytics

Sign in

arXiv:2303.16659 [math.OC]AbstractReferencesReviewsResources

Safe Zeroth-Order Optimization Using Quadratic Local Approximations

Baiwei Guo, Yuning Jiang, Giancarlo Ferrari-Trecate, Maryam Kamgarpour

Published 2023-03-29Version 1

This paper addresses black-box smooth optimization problems, where the objective and constraint functions are not explicitly known but can be queried. The main goal of this work is to generate a sequence of feasible points converging towards a KKT primal-dual pair. Assuming to have prior knowledge on the smoothness of the unknown objective and constraints, we propose a novel zeroth-order method that iteratively computes quadratic approximations of the constraint functions, constructs local feasible sets and optimizes over them. Under some mild assumptions, we prove that this method returns an $\eta$-KKT pair (a property reflecting how close a primal-dual pair is to the exact KKT condition) within $O({1}/{\eta^{2}})$ iterations. Moreover, we numerically show that our method can achieve faster convergence compared with some state-of-the-art zeroth-order approaches. The effectiveness of the proposed approach is also illustrated by applying it to nonconvex optimization problems in optimal control and power system operation.

Related articles:
arXiv:2304.01797 [math.OC] (Published 2023-04-04)
Safe Zeroth-Order Optimization Using Linear Programs
arXiv:2211.02645 [math.OC] (Published 2022-11-04)
Safe Zeroth-Order Convex Optimization Using Quadratic Local Approximations
arXiv:1901.08731 [math.OC] (Published 2019-01-25)
A Primal-Dual Approach to Markovian Network Optimization