arXiv Analytics

Sign in

arXiv:2303.14875 [math.AP]AbstractReferencesReviewsResources

Regularity of pullback attractors for nonclassical diffusion equations with delay

Yuming Qin, Qitao Cai, Ming Mei, Ke Wang

Published 2023-03-27Version 1

In this paper, we mainly study the regularity of pullback $\mathcal{D}$-attractors for a nonautonomous nonclassical diffusion equation with delay term $b(t,u_t)$ which contains some hereditary characteristics. Under a critical nonlinearity $f$, a time-dependent force $g(t,x)$ with exponential growth and a delayed force term $b(t,u_t)$, we prove that there exists a pullback $\mathcal{D}$-attractor $\mathcal{A}=\{A(t):t \in \mathbb{R}\}$ in $\mathbb{K}^1=H_0^1(\Omega) \times L^2((-h,0);L^2(\Omega))$ to problem \eqref{ine01} and for each $t \in \mathbb{R}$, $A(t)$ is bounded in $\mathbb{K}^2=H^2(\Omega) \cap H_0^1(\Omega) \times L^2((-h,0);L^2(\Omega))$.

Related articles: Most relevant | Search more
arXiv:1407.6135 [math.AP] (Published 2014-07-23, updated 2014-08-12)
Minimality properties of set-valued processes and their pullback attractors
arXiv:1003.0646 [math.AP] (Published 2010-03-02, updated 2010-06-28)
Regularity of n/2-harmonic maps into spheres
arXiv:0810.2577 [math.AP] (Published 2008-10-14)
Everywhere regularity of certain types of parabolic systems