arXiv Analytics

Sign in

arXiv:2303.13134 [math.FA]AbstractReferencesReviewsResources

Pointwise multipliers for \\ Triebel--Lizorkin and Besov spaces on Lie groups

Tommaso Bruno, Marco M. Peloso, Maria Vallarino

Published 2023-03-23Version 1

On a general Lie group $G$ endowed with a sub-Riemannian structure and of local dimension $d$, we characterize the pointwise multipliers of Triebel--Lizorkin spaces $F^{p,q}_{\alpha}$ for $p,q\in (1,\infty)$ and $\alpha>d/p$, and those of Besov spaces $B^{p,q}_{\alpha}$ for $q\in [1,\infty]$, $p>d$ and $d/p< \alpha<1$. When $G$ is stratified, we extend the latter characterization to all $p,q\in [1,\infty]$ and $\alpha>d/p$.

Related articles: Most relevant | Search more
arXiv:2210.14073 [math.FA] (Published 2022-10-25)
Pointwise Multipliers for Besov Spaces $B^{0,b}_{p,\infty}(\mathbb{R}^n)$ with Only Logarithmic Smoothness
arXiv:1806.03428 [math.FA] (Published 2018-06-09)
BV functions and Besov spaces associated with Dirichlet spaces
arXiv:0812.0020 [math.FA] (Published 2008-11-28)
Trace operators of modulation, alpha modulation and Besov spaces