arXiv:2301.12826 [math.NT]AbstractReferencesReviewsResources
Moments in the Chebotarev density theorem: non-Gaussian families
Régis de La Bretèche, Daniel Fiorilli, Florent Jouve
Published 2023-01-30Version 1
In this paper we investigate higher moments attached to the Chebotarev Density Theorem. Our focus is on the impact that peculiar Galois group structures have on the limiting distribution. Precisely we consider in this paper the case of groups having a character of large degree. Under the Generalized Riemann Hypothesis, we prove in particular that there exists families of Galois extensions of number fields having doubly transitive Frobenius group for which no Gaussian limiting distribution occurs.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2012.12534 [math.NT] (Published 2020-12-23)
Chebotarev Density Theorem and Extremal Primes for non-CM elliptic curves
Abelian Varieties and Galois Extensions of Hilbertian Fields
arXiv:2207.06575 [math.NT] (Published 2022-07-14)
On the number of certain Galois extensions of local fields