arXiv Analytics

Sign in

arXiv:2301.11383 [math.RT]AbstractReferencesReviewsResources

Tensor products and intertwining operators between two uniserial representations of the Galilean Lie algebra $\mathfrak{sl}(2)\ltimes \mathfrak{h}_n$

Leandro Cagliero, Iván Gómez Rivera

Published 2023-01-26Version 1

Let $\mathfrak{sl}(2)\ltimes \mathfrak{h}_n$, $n\ge 1$, be the Galilean Lie algebra over a field of characteristic zero, where $\mathfrak{h}_{n}$ is the Heisenberg Lie algebra of dimension $2n+1$, and $\mathfrak{sl}(2)$ acts on $\mathfrak{h}_{n}$ so that $\mathfrak{h}_n\simeq V(2n-1)\oplus V(0)$ as $\mathfrak{sl}(2)$-modules (here $V(k)$ denotes the irreducible $\mathfrak{sl}(2)$-module of highest weight $k$). The isomorphism classes of uniserial $\big(\mathfrak{sl}(2)\ltimes \mathfrak{h}_n\big)$-modules are known. In this paper we study the tensor product of two uniserial representations of $\mathfrak{sl}(2)\ltimes \mathfrak{h}_n$. Among other things, we obtain the $\mathfrak{sl}(2)$-module structure of the socle of $V\otimes W$ and we describe the space of intertwining operators $\text{Hom}_{\mathfrak{sl}(2)\ltimes \mathfrak{h}_n}(V,W)$, where $V$ and $W$ are uniserial representations of $\mathfrak{sl}(2)\ltimes \mathfrak{h}_n$. This article extends a previous work in which we obtained analogous results for the Lie algebra $\mathfrak{sl}(2)\ltimes \mathfrak{a}_m$ where $\mathfrak{a}_m$ is the abelian Lie algebra and $\mathfrak{sl}(2)$ acts so that $\mathfrak{a}_m\simeq V(m-1)$ as $\mathfrak{sl}(2)$-modules.

Comments: arXiv admin note: text overlap with arXiv:2201.10605
Categories: math.RT, math.KT, math.RA
Subjects: 17B10, 18M20, 22E27
Related articles: Most relevant | Search more
arXiv:2201.10605 [math.RT] (Published 2022-01-25)
Tensor products and intertwining operators for uniserial representations of the Lie algebra $\mathfrak{sl}(2)\ltimes V(m)$
arXiv:1809.08408 [math.RT] (Published 2018-09-22)
On tensor products of irreducible integrable representations
arXiv:1509.07443 [math.RT] (Published 2015-09-24)
Pieri type rules and $Gl(2|2)$ tensor products