arXiv Analytics

Sign in

arXiv:2301.03916 [cond-mat.mes-hall]AbstractReferencesReviewsResources

External screening and lifetime of exciton population in single-layer ReSe$_2$ probed by time- and angle-resolved photoemission spectroscopy

Klara Volckaert, Byoung Ki Choi, Hyuk Jin Kim, Deepnarayan Biswas, Denny Puntel, Simone Peli, Fulvio Parmigiani, Federico Cilento, Young Jun Chang, Søren Ulstrup

Published 2023-01-10Version 1

The semiconductor ReSe$_2$ is characterized by a strongly anisotropic optical absorption and is therefore promising as an optically active component in two-dimensional heterostructures. However, the underlying femtosecond dynamics of photoinduced excitations in such materials has not been sufficiently explored. Here, we apply an infrared optical excitation to single-layer ReSe$_2$ grown on a bilayer graphene substrate and monitor the temporal evolution of the excited state signal using time- and angle-resolved photoemission spectroscopy. We measure an optical gap of $(1.53 \pm 0.02)$ eV, consistent with resonant excitation of the lowest exciton state. The exciton distribution is tunable via the linear polarization of the pump pulse and exhibits a biexponential decay with time constants given by $\tau_1 = (110 \pm 10)$ fs and $\tau_2 = (650 \pm 70)$ fs, facilitated by recombination via an in-gap state that is pinned at the Fermi level. By extracting the momentum-resolved exciton distribution we estimate its real-space radial extent to be greater than 17.1 \AA, implying significant exciton delocalization due to screening from the bilayer graphene substrate.

Related articles: Most relevant | Search more
arXiv:1601.07309 [cond-mat.mes-hall] (Published 2016-01-27)
Determination of the photoelectron interaction time by spin- and angle-resolved photoemission spectroscopy
arXiv:0910.4126 [cond-mat.mes-hall] (Published 2009-10-21, updated 2009-12-16)
Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy
arXiv:2008.07035 [cond-mat.mes-hall] (Published 2020-08-17)
Unusual temperature evolution of band structure of Bi(111) studied by angle-resolved photoemission spectroscopy and density functional theory