arXiv Analytics

Sign in

arXiv:2212.14139 [math.NT]AbstractReferencesReviewsResources

The matrix equation $aX^m+bY^n=cI$ over $M_2(\mathbb{Z})$

Hongjian Li, Pingzhi Yuan

Published 2022-12-29Version 1

Let $\mathbb{N}$ be the set of all positive integers and let $a,\, b,\, c$ be nonzero integers such that $\gcd\left(a,\, b,\, c\right)=1$. In this paper, we prove the following three results: (1) the solvability of the matrix equation $aX^m+bY^n=cI,\,X,\,Y\in M_2(\mathbb{Z}),\, m,\, n\in\mathbb{N}$ can be reduced to the solvability of the corresponding Diophantine equation if $XY\neq YX$ and the solvability of the equation $ax^m+by^n=c,\, m,\, n\in\mathbb{N}$ in quadratic fields if $XY=YX$; (2) we determine all non-commutative solutions of the matrix equation $X^n+Y^n=c^nI,\,X,\,Y\in M_2(\mathbb{Z}),\,n\in\mathbb{N},\,n\geq3$, and the solvability of this matrix equation can be reduced to the solvability of the equation $x^n+y^n=c^n,\, n\in\mathbb{N},\,n\geq3$ in quadratic fields if $XY=YX$; (3) we determine all solutions of the matrix equation $aX^2+bY^2=cI,\,X,\,Y\in M_2(\mathbb{Z})$.

Related articles: Most relevant | Search more
arXiv:1004.2996 [math.NT] (Published 2010-04-18)
On the sum of two integral squares in quadratic fields $\Q(\sqrt{\pm p})
arXiv:1611.05595 [math.NT] (Published 2016-11-17)
The distribution of $H_{8}$-extensions of quadratic fields
arXiv:2011.14528 [math.NT] (Published 2020-11-30)
Powers of Gauss sums in quadratic fields