arXiv:2212.13592 [math.CA]AbstractReferencesReviewsResources
A linear programming approach to Fuglede's conjecture in $\mathbb{Z}_p^3$
Published 2022-12-27Version 1
We present an approach to Fuglede's conjecture in $\mathbb{Z}_p^3$ using linear programming bounds, obtaining the following partial result: if $A\subseteq\mathbb{Z}_p^3$ with $p^2-p\sqrt{p}+\sqrt{p}<|A|<p^2$, then $A$ is not spectral.
Comments: 13 pages
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:math/0612016 [math.CA] (Published 2006-12-01)
On Fuglede's conjecture and the existence of universal spectra
arXiv:1612.01328 [math.CA] (Published 2016-12-05)
Fuglede's conjecture on cyclic groups of order $p^nq$
On Fuglede's conjecture for three intervals