arXiv:2212.13348 [quant-ph]AbstractReferencesReviewsResources
Time-System Entanglement and Special Relativity
Published 2022-12-27Version 1
We know that space and time are treated almost equally in classical physics, but we also know that this is not the case for quantum mechanics. A quantum description of both space and time is important to really understand the quantum nature of reality. The Page-Wootters mechanism of quantum time is a promising starting point, according to which the evolution of the quantum system is described by the entanglement between it and quantum temporal degrees of freedom. In this paper, we use a qubit clock model to study how the time-system entanglement measures depend on the rapidity when the quantum system is Lorentz boosted. We consider the case of a spin-1/2 particle with Gaussian momentum distribution as a concrete example.