arXiv Analytics

Sign in

arXiv:2212.03509 [math.FA]AbstractReferencesReviewsResources

On the function spaces of general weights

Douadi Drihem

Published 2022-12-07Version 1

The aim of this paper is twofold. Firstly, we chatacterize the spaces $\dot{B}_{p,q}(\mathbb{R}^{n},\{t_{k}\})$ and $\dot{F}_{p,q}(\mathbb{R}^{n},\{t_{k}\})$ for $q=\infty $. Secondly, with some suitable assumptions on the $p$-admissible weight sequences $\{t_{k}\}$ we prove that \begin{equation*} \dot{F}_{p,q}(\mathbb{R}^{n},\{t_{k}\})=\dot{F}_{p,q}(\mathbb{R}^{n},t_{j}),\quad j\in \mathbb{Z}, \end{equation*} in the sense of equivalent quasi-norms.

Comments: Ignore Theorem 3.20 and Corollary 3.26 of arXiv:2009.12223v2. arXiv admin note: text overlap with arXiv:2106.00621, arXiv:2009.03636
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:2009.03636 [math.FA] (Published 2020-09-08)
Dilation in function spaces with general weights
arXiv:2109.07518 [math.FA] (Published 2021-09-15)
Interpolation inequalities in function spaces of Sobolev-Lorentz type
arXiv:math/0201161 [math.FA] (Published 2002-01-17)
Compactness Criteria in Function Spaces