arXiv Analytics

Sign in

arXiv:2212.01845 [math.CA]AbstractReferencesReviewsResources

Kakeya maximal inequality in the Heisenberg group

Katrin Fässler, Andrea Pinamonti, Pietro Wald

Published 2022-12-04Version 1

We define the Heisenberg Kakeya maximal functions $M_{\delta}f$, $0<\delta<1$, by averaging over $\delta$-neighborhoods of horizontal unit line segments in the Heisenberg group $\mathbb{H}^1$ equipped with the Kor\'{a}nyi distance $d_{\mathbb{H}}$. We show that $$ \|M_{\delta}f\|_{L^3(S^1)}\leq C(\varepsilon)\delta^{-1/3-\varepsilon}\|f\|_{L^3(\mathbb{H}^1)},\quad f\in L^3(\mathbb{H}^1),$$ for all $\varepsilon>0$. The proof is based on a recent variant, due to Pramanik, Yang, and Zahl, of Wolff's circular maximal function theorem for a class of planar curves related to Sogge's cinematic curvature condition. As an application of our Kakeya maximal inequality, we recover the sharp lower bound for the Hausdorff dimension of Heisenberg Kakeya sets of horizontal unit line segments in $(\mathbb{H}^1,d_{\mathbb{H}})$, first proven by Liu.

Related articles: Most relevant | Search more
arXiv:2311.14667 [math.CA] (Published 2023-11-24)
An $L^{4/3}$ $SL_2$ Kakeya maximal inequality
arXiv:1205.3010 [math.CA] (Published 2012-05-14)
Transversality of isotropic projections, unrectifiability and Heisenberg groups
arXiv:2204.10017 [math.CA] (Published 2022-04-21)
An analogue of Ingham's theorem on the Heisenberg group