arXiv:2211.11192 [math.FA]AbstractReferencesReviewsResources
Characterizations of the projection bands and some order properties of the space of continuous functions
Published 2022-11-21Version 1
We show that for an ideal $H$ in an Archimedean vector lattice $F$ the following conditions are equivalent: $\bullet$ $H$ is a projection band; $\bullet$ Any collection of mutually disjoint vectors in $H$, which is order bounded in $F$, is order bounded in $H$; $\bullet$ $H$ is an infinite meet-distributive element of the lattice $\mathcal{I}_{F}$ of all ideals in $F$ in the sense that $\bigcap\limits_{J\in \mathcal{J}}\left(H+ J\right)=H+ \bigcap \mathcal{J}$, for any $\mathcal{J}\subset \mathcal{I}_{F}$. Additionally, we show that if $F$ is uniformly complete and $H$ is a uniformly closed principal ideal, then $H$ is a projection band. In the process we investigate some order properties of lattices of continuous functions on Tychonoff topological spaces.