arXiv Analytics

Sign in

arXiv:2211.00499 [math.NA]AbstractReferencesReviewsResources

A combination technique for optimal control problems constrained by random PDEs

Fabio Nobile, Tommaso Vanzan

Published 2022-11-01Version 1

We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of Optimal Control Problems (OCPs) constrained by random partial differential equations. The method requires to solve the OCP for several low-fidelity spatial grids and quadrature formulae for the objective functional. All the computed solutions are then linearly combined to get a final approximation which, under suitable regularity assumptions, preserves the same accuracy of fine tensor product approximations, while drastically reducing the computational cost. The combination technique involves only tensor product quadrature formulae, thus the discretized OCPs preserve the convexity of the continuous OCP. Hence, the combination technique avoids the inconveniences of Multilevel Monte Carlo and/or sparse grids approaches, but remains suitable for high dimensional problems. The manuscript presents an a-priori procedure to choose the most important mixed differences and an asymptotic complexity analysis, which states that the asymptotic complexity is exclusively determined by the spatial solver. Numerical experiments validate the results.

Related articles: Most relevant | Search more
arXiv:1912.07028 [math.NA] (Published 2019-12-15)
Symplectic Runge-Kutta discretization of a regularized forward-backward sweep iteration for optimal control problems
arXiv:2212.10654 [math.NA] (Published 2022-12-20)
POD-based reduced order methods for optimal control problems governed by parametric partial differential equation with varying boundary control
arXiv:2105.13206 [math.NA] (Published 2021-05-27)
Tensor numerical method for optimal control problems constrained by an elliptic operator with general rank-structured coefficients