arXiv Analytics

Sign in

arXiv:2210.17179 [math.AG]AbstractReferencesReviewsResources

Picard Groups of Some Quot Schemes

Chandranandan Gangopadhyay, Ronnie Sebastian

Published 2022-10-31Version 1

Let $C$ be a smooth projective curve over the field of complex numbers $\mathbb{C}$ of genus $g(C)>0$. Let $E$ be a locally free sheaf on $C$ of rank $r$ and degree $e$. Let $\mathcal{Q}:={\rm Quot}_{C/\mathbb{C}}(E,k,d)$ denote the Quot scheme of quotients of $E$ of rank $k$ and degree $d$. For $k>0$ and $d\gg 0$ we compute the Picard group of $\mathcal{Q}$.

Comments: Comments are welcome
Categories: math.AG
Subjects: 14J60
Related articles: Most relevant | Search more
arXiv:0807.4855 [math.AG] (Published 2008-07-30, updated 2009-08-13)
Hodge Correlators II
arXiv:2202.12366 [math.AG] (Published 2022-02-24)
Bredon motivic cohomology of the complex numbers
arXiv:2204.13646 [math.AG] (Published 2022-04-28)
Picard schemes of noncommutative bielliptic surfaces