arXiv:2210.10935 [cond-mat.stat-mech]AbstractReferencesReviewsResources
Brownian particles in periodic potentials: coarse-graining versus fine structure
Lucianno Defaveri, Eli Barkai, David A. Kessler
Published 2022-10-20Version 1
We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential. When the coarse-graining is larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows like $2 D^* t$, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs factor $e^{-V(x)/k_B T}$, the latter being non-normalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula $F=TS - E$ is extended to this far from equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.