arXiv Analytics

Sign in

arXiv:2210.10765 [cs.LG]AbstractReferencesReviewsResources

When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning

Annie Xie, Fahim Tajwar, Archit Sharma, Chelsea Finn

Published 2022-10-19Version 1

A long-term goal of reinforcement learning is to design agents that can autonomously interact and learn in the world. A critical challenge to such autonomy is the presence of irreversible states which require external assistance to recover from, such as when a robot arm has pushed an object off of a table. While standard agents require constant monitoring to decide when to intervene, we aim to design proactive agents that can request human intervention only when needed. To this end, we propose an algorithm that efficiently learns to detect and avoid states that are irreversible, and proactively asks for help in case the agent does enter them. On a suite of continuous control environments with unknown irreversible states, we find that our algorithm exhibits better sample- and intervention-efficiency compared to existing methods. Our code is publicly available at https://sites.google.com/view/proactive-interventions

Comments: 36th Conference on Neural Information Processing Systems (NeurIPS 2022)
Categories: cs.LG
Related articles: Most relevant | Search more
arXiv:1711.06782 [cs.LG] (Published 2017-11-18)
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
arXiv:1906.01374 [cs.LG] (Published 2019-06-04)
Autonomous Reinforcement Learning of Multiple Interrelated Tasks
arXiv:2112.09605 [cs.LG] (Published 2021-12-17, updated 2022-08-08)
Autonomous Reinforcement Learning: Formalism and Benchmarking