arXiv:2210.09312 [astro-ph.GA]AbstractReferencesReviewsResources
A new look at the infrared properties of z $\sim$ 5 galaxies
L. Sommovigo, A. Ferrara, S. Carniani, A. Pallottini, P. Dayal, E. Pizzati, M. Ginolfi, V. Markov, A. Faisst
Published 2022-10-17Version 1
Recent ALMA large surveys unveiled the presence of significant dust continuum emission in star-forming galaxies at $z>4$. Unfortunately, such large programs -- i.e. ALPINE ($z\sim 5$) and REBELS ($z \sim 7$) -- only provide us with a single Far-Infrared (FIR) continuum data point for their individual targets. Therefore, high-$z$ galaxies FIR spectral energy densities (SEDs) remain mostly unconstrained, hinging on an assumption for their dust temperature ($T_{\rm d}$) in the SED fitting procedure. This introduces uncertainties in the inferred dust masses ($M_{\rm d }$), infrared luminosities ($L_{\rm IR}$), and obscured Star Formation Rate (SFR) fraction at $z > 4$. In this work we use a method that allows us to constrain $T_{\rm d}$ with a single band measurement by combining the $158\ \mathrm{\mu m}$ continuum information with the overlying [CII] emission line. We analyse the $21$ [CII] and FIR continuum detected $z\sim 5$ galaxies in ALPINE, finding a range of $T_{\rm d}=25-60\ \mathrm{K}$ and $M_{\rm d} = 0.6-25.1\ \times 10^{7}\ \mathrm{M_{\odot}}$. Given the measured stellar masses of ALPINE galaxies, the inferred dust yields are around $M_{\rm d}/M_{\star} = (0.2-8) \times 10^{-3}$, consistent with theoretical dust-production constraints. We find that $8$ out of $21$ ALPINE galaxies have $L_{\rm IR} \geq 10^{12}\ \mathrm{L_{\odot}}$, comparable to UltraLuminous IR Galaxies (ULIRGs). Relying on ultraviolet-to-optical SED fitting, the SFR was underestimated by up to $2$ orders of magnitude in $4$ of these $8$ ULIRGs-like galaxies. We conclude that these $4$ peculiar sources should be characterised by a two-phase interstellar medium structure with "spatially-segregated" FIR and ultraviolet emitting regions.