arXiv Analytics

Sign in

arXiv:2209.13708 [cs.LG]AbstractReferencesReviewsResources

Falsification before Extrapolation in Causal Effect Estimation

Zeshan Hussain, Michael Oberst, Ming-Chieh Shih, David Sontag

Published 2022-09-27Version 1

Randomized Controlled Trials (RCTs) represent a gold standard when developing policy guidelines. However, RCTs are often narrow, and lack data on broader populations of interest. Causal effects in these populations are often estimated using observational datasets, which may suffer from unobserved confounding and selection bias. Given a set of observational estimates (e.g. from multiple studies), we propose a meta-algorithm that attempts to reject observational estimates that are biased. We do so using validation effects, causal effects that can be inferred from both RCT and observational data. After rejecting estimators that do not pass this test, we generate conservative confidence intervals on the extrapolated causal effects for subgroups not observed in the RCT. Under the assumption that at least one observational estimator is asymptotically normal and consistent for both the validation and extrapolated effects, we provide guarantees on the coverage probability of the intervals output by our algorithm. To facilitate hypothesis testing in settings where causal effect transportation across datasets is necessary, we give conditions under which a doubly-robust estimator of group average treatment effects is asymptotically normal, even when flexible machine learning methods are used for estimation of nuisance parameters. We illustrate the properties of our approach on semi-synthetic and real world datasets, and show that it compares favorably to standard meta-analysis techniques.

Comments: Conference on Neural Information Processing Systems, 2022 (to appear)
Categories: cs.LG
Related articles: Most relevant | Search more
arXiv:2401.06646 [cs.LG] (Published 2024-01-12)
Block Majorization Minimization with Extrapolation and Application to $β$-NMF
arXiv:2209.08885 [cs.LG] (Published 2022-09-19, updated 2022-10-20)
Causal Effect Estimation with Global Probabilistic Forecasting: A Case Study of the Impact of Covid-19 Lockdowns on Energy Demand
arXiv:2302.00848 [cs.LG] (Published 2023-02-02)
Causal Effect Estimation: Recent Advances, Challenges, and Opportunities