arXiv Analytics

Sign in

arXiv:2209.13634 [math.NT]AbstractReferencesReviewsResources

Non-archimedean Schur representations of $\mathrm{GL}(n,R)$ and their invariant lattices

Yassine EL Maazouz, Antonio Lerario

Published 2022-09-27Version 1

Let a $K$ be a non-archimedean discretely valued field and $R$ its valuation ring. Given a vector space $V$ of dimension $n$ over $K$ and a partition $\lambda$ of an integer $d$, we study the problem of determining the invariant lattices in the Schur module $S_\lambda(V)$ under the action of the group $\mathrm{GL}(n,R)$. When $K$ is a non-archimedean local field, our results determine the $\mathrm{GL}(n,R)$-invariant Gaussian distributions on $S_\lambda(V)$.

Related articles: Most relevant | Search more
arXiv:2312.03570 [math.NT] (Published 2023-12-06)
Theta-Induced Diffusion on Tate Elliptic Curves over Non-Archimedean Local Fields
arXiv:2305.09595 [math.NT] (Published 2023-05-16)
Hecke operators for curves over non-archimedean local fields and related finite rings
arXiv:math/0503090 [math.NT] (Published 2005-03-05)
Conductors and newforms for U(1,1)