arXiv Analytics

Sign in

arXiv:2209.12566 [math.RT]AbstractReferencesReviewsResources

Dirac cohomology for the BGG category $\mathcal{O}$

Spyridon Afentoulidis-Almpanis

Published 2022-09-26Version 1

We study Dirac cohomology $H_D^{\mathfrak{g},\mathfrak{h}}(M)$ for modules belonging to category $\mathcal{O}$ of a finite dimensional complex semisimple Lie algebra. We prove Vogan's conjecture, a nonvanishing result for $H_D^{\mathfrak{g},\mathfrak{h}}(M)$ while we show that in the case of a Hermitian symmetric pair $(\mathfrak{g},\mathfrak{k})$ and an irreducible unitary module $M\in\mathcal{O}$, Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in $M$. In the last part, we show that the higher Dirac cohomology and index introduced by Pand\v{z}i\'c and Somberg satisfy nice homological properties for $M\in\mathcal{O}$.

Related articles: Most relevant | Search more
arXiv:2106.00057 [math.RT] (Published 2021-05-31)
BGG categories in prime characteristics
arXiv:math/0502227 [math.RT] (Published 2005-02-11, updated 2008-11-14)
Axiomatic framework for the BGG category O
arXiv:1703.01100 [math.RT] (Published 2017-03-03)
Dirac cohomology and Euler-Poincaré pairing for weight modules