arXiv:2209.07107 [math.AG]AbstractReferencesReviewsResources
Quadratic Pairs on Azumaya Algebras over a Scheme
Philippe Gille, Erhard Neher, Cameron Roy Ruether
Published 2022-09-15Version 1
We investigate quadratic pairs for Azumaya algebras with involutions over a base scheme S as defined by Calm{\`e}s and Fasel, generalizing the case of quadratic pairs on central simple algebras over a field (Knus, Merkurjev, Rost, Tignol). We describe a cohomological obstruction for an Azumaya algebra over S with orthogonal involution to admit a quadratic pair. When S is affine this obstruction vanishes, however it is non-trivial in general. In particular, we construct explicit examples with non-trivial obstructions.
Related articles: Most relevant | Search more
Isotropy of orthogonal involutions
Notes on De Jong's period=index theorem for central simple algebras over fields of transcendence degree two
arXiv:1710.02798 [math.AG] (Published 2017-10-08)
Involutions of Azumaya algebras