arXiv:2209.05050 [math.NT]AbstractReferencesReviewsResources
Overconvergence of étale $(\varphi,Γ)$-modules in families
Published 2022-09-12Version 1
We prove a conjecture of Emerton, Gee and Hellmann concerning the overconvergence of \'etale $(\varphi,\Gamma)$-modules in families parametrized by topologically finite type $\mathbb{Z}_{p}$-algebras. As a consequence, we deduce the existence of a natural map from the rigid fiber of the Emerton-Gee stack to the rigid analytic stack of $(\varphi,\Gamma)$-modules.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1606.07216 [math.NT] (Published 2016-06-23)
Loose crystalline lifts and overconvergence of étale $(\varphi, τ)$-modules
arXiv:2206.02888 [math.NT] (Published 2022-06-06)
The Emerton-Gee stack of rank one $(\varphi,Γ)$-modules
arXiv:2309.13665 [math.NT] (Published 2023-09-24)
Irregular loci in the Emerton-Gee stack for GL_2
Rebecca Bellovin et al.