arXiv Analytics

Sign in

arXiv:2208.13612 [math.GT]AbstractReferencesReviewsResources

Rasmussen invariants of Whitehead doubles and other satellites

Lukas Lewark, Claudius Zibrowius

Published 2022-08-29Version 1

We prove formulae for the $\mathbb{F}_2$-Rasmussen invariant of satellite knots of patterns with wrapping number 2, using the multicurve technology for Khovanov and Bar-Natan homology developed by Kotelskiy, Watson, and the second author. A new concordance homomorphism, which is independent of the Rasmussen invariant, plays a central role in these formulae. We also explore whether similar formulae hold for the Ozsv\'ath-Szab\'o invariant $\tau$.

Comments: 48 pages, 16 figures, 7 tables. Comments welcome
Categories: math.GT, math.QA, math.SG
Subjects: 57K10, 57K18
Related articles: Most relevant | Search more
arXiv:2301.09764 [math.GT] (Published 2023-01-24)
A Rasmussen invariant for links in $\mathbb{RP}^3$
arXiv:math/0411643 [math.GT] (Published 2004-11-29, updated 2018-06-18)
Rasmussen invariant, Slice-Bennequin inequality, and sliceness of knots
arXiv:0903.3638 [math.GT] (Published 2009-03-21)
Combinatorial proofs for basic properties of Ozsvath-Szabo invariant