arXiv Analytics

Sign in

arXiv:2208.03142 [cs.CV]AbstractReferencesReviewsResources

BoxShrink: From Bounding Boxes to Segmentation Masks

Michael Gröger, Vadim Borisov, Gjergji Kasneci

Published 2022-08-05Version 1

One of the core challenges facing the medical image computing community is fast and efficient data sample labeling. Obtaining fine-grained labels for segmentation is particularly demanding since it is expensive, time-consuming, and requires sophisticated tools. On the contrary, applying bounding boxes is fast and takes significantly less time than fine-grained labeling, but does not produce detailed results. In response, we propose a novel framework for weakly-supervised tasks with the rapid and robust transformation of bounding boxes into segmentation masks without training any machine learning model, coined BoxShrink. The proposed framework comes in two variants - rapid-BoxShrink for fast label transformations, and robust-BoxShrink for more precise label transformations. An average of four percent improvement in IoU is found across several models when being trained using BoxShrink in a weakly-supervised setting, compared to using only bounding box annotations as inputs on a colonoscopy image data set. We open-sourced the code for the proposed framework and published it online.

Related articles: Most relevant | Search more
arXiv:2209.07547 [cs.CV] (Published 2022-09-15)
One-Shot Synthesis of Images and Segmentation Masks
arXiv:2408.03304 [cs.CV] (Published 2024-08-06)
Fusing Forces: Deep-Human-Guided Refinement of Segmentation Masks
arXiv:1909.07809 [cs.CV] (Published 2019-09-17)
Learn to Segment Organs with a Few Bounding Boxes