arXiv Analytics

Sign in

arXiv:2208.01255 [math.RT]AbstractReferencesReviewsResources

Localizations for quiver Hecke algebras II

Masaki Kashiwara, Myungho Kim, Se-jin Oh, Euiyong Park

Published 2022-08-02Version 1

We prove that the localization of the monoidal category $\mathcal{C}_w$ is rigid, and the category $\mathcal{C}_{w,v}$ admits a localization via a real commuting family of central objects. Note that the localization of $\mathcal{C}_{w,v}$ categorifies the open Richardson variety.

Comments: 58 pages. arXiv admin note: text overlap with arXiv:1901.09319
Categories: math.RT, math.QA
Subjects: 18D10, 16D90, 81R10
Related articles: Most relevant | Search more
arXiv:2409.04715 [math.RT] (Published 2024-09-07)
Monoidal categorification on some open Richardson varieties
arXiv:1710.00976 [math.RT] (Published 2017-10-03)
Representation categories of Mackey Lie algebras as universal monoidal categories
arXiv:2106.03120 [math.RT] (Published 2021-06-06)
Simple modules for quiver Hecke algebras and the Robinson-Schensted-Knuth correspondence