arXiv:2207.09166 [math.PR]AbstractReferencesReviewsResources
Regular subspaces of symmetric stable processes
Dongjian Qian, Jiangang Ying, Yushu Zheng
Published 2022-07-19Version 1
Roughly speaking, regular subspaces are regular Dirichlet forms which inherit the original forms with smaller domains. In this paper, regular subspaces of 1-dim symmetric $\alpha$-stable processes are considered. The main result is that it admits proper regular subspaces if and only if $\alpha\in [1,2]$. Moreover, general 1-dim symmetric L\'evy processes will also be investigated. It will be shown that whether it has proper regular subspaces is closely related to whether it has finite variation.
Comments: 12 pages
Categories: math.PR
Related articles: Most relevant | Search more
Counting colored planar maps free-probabilistically
arXiv:2412.06826 [math.PR] (Published 2024-12-06)
A comment on `The harmonic descent chain' by D.J. Aldous, S. Janson and X. Li
arXiv:2004.07835 [math.PR] (Published 2020-04-16)
Some martingale characterizations of compound mixed Poisson processes