arXiv:2207.06274 [math.AP]AbstractReferencesReviewsResources
A non-local semilinear eigenvalue problem
Giovanni Franzina, Danilo Licheri
Published 2022-07-13Version 1
For a non-local semilinear eigenvalue problem, we prove simplicity and isolation of the first eigenvalue with homogeneous Dirichlet boundary conditions on open sets supporting a suitable compact Sobolev embedding.
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1601.03019 [math.AP] (Published 2016-01-12)
An optimization problem for the first eigenvalue of the $p-$fractional laplacian
arXiv:1611.03532 [math.AP] (Published 2016-11-10)
On the strict monotonicity of the first eigenvalue of the $p$-Laplacian on annuli
arXiv:0706.0873 [math.AP] (Published 2007-06-06)
Shape derivative of the first eigenvalue of the 1-Laplacian