arXiv Analytics

Sign in

arXiv:2207.05027 [cs.CV]AbstractReferencesReviewsResources

Unsupervised Semantic Segmentation with Self-supervised Object-centric Representations

Andrii Zadaianchuk, Matthaeus Kleindessner, Yi Zhu, Francesco Locatello, Thomas Brox

Published 2022-07-11Version 1

In this paper, we show that recent advances in self-supervised feature learning enable unsupervised object discovery and semantic segmentation with a performance that matches the state of the field on supervised semantic segmentation 10 years ago. We propose a methodology based on unsupervised saliency masks and self-supervised feature clustering to kickstart object discovery followed by training a semantic segmentation network on pseudo-labels to bootstrap the system on images with multiple objects. We present results on PASCAL VOC that go far beyond the current state of the art (47.3 mIoU), and we report for the first time results on MS COCO for the whole set of 81 classes: our method discovers 34 categories with more than $20\%$ IoU, while obtaining an average IoU of 19.6 for all 81 categories.

Related articles: Most relevant | Search more
arXiv:2304.08965 [cs.CV] (Published 2023-04-18)
Unsupervised Semantic Segmentation of 3D Point Clouds via Cross-modal Distillation and Super-Voxel Clustering
arXiv:2103.17070 [cs.CV] (Published 2021-03-30)
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering
arXiv:2203.11160 [cs.CV] (Published 2022-03-21)
Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation