arXiv Analytics

Sign in

arXiv:2207.03425 [math.NT]AbstractReferencesReviewsResources

Haros graphs: an exotic representation of real numbers

Jorge Calero-Sanz, Bartolo Luque, Lucas Lacasa

Published 2022-07-07Version 1

This paper introduces Haros graphs, a construction which provides a graph-theoretical representation of real numbers in the unit interval reached via paths in the Farey binary tree. We show how the topological structure of Haros graphs yields a natural classification of the reals numbers into a hierarchy of families. To unveil such classification, we introduce an entropic functional on these graphs and show that it can be expressed, thanks to its fractal nature, in terms of a generalised de Rham curve. We show that this entropy reaches a global maximum at the reciprocal of the Golden number and otherwise displays a rich hierarchy of local maxima and minima that relate to specific families of irrationals (noble numbers) and rationals, overall providing an exotic classification and representation of the reals numbers according to entropic principles. We close the paper with a number of conjectures and outline a research programme on Haros graphs.

Related articles: Most relevant | Search more
arXiv:1202.4377 [math.NT] (Published 2012-02-20, updated 2014-11-09)
The universal thickening of the field of real numbers
arXiv:1602.01507 [math.NT] (Published 2016-02-03)
Nega-$\tilde Q$-representation of real numbers
arXiv:2203.04242 [math.NT] (Published 2022-03-08)
On geometry of simultaneous approximation to three real numbers