arXiv Analytics

Sign in

arXiv:2207.01872 [math.PR]AbstractReferencesReviewsResources

Optimal tail comparison under convex majorization

Daniel J. Fresen

Published 2022-07-05Version 1

Following results of Kemperman and Pinelis, we show that if $X$ and $Y$ are real valued random variables such that $\mathbb{E}\left\vert Y\right\vert<\infty$ and for all non-decreasing convex $\varphi:\mathbb{R}\rightarrow [0,\infty)$, $\mathbb{E}\varphi(X)\leq\mathbb{E}\varphi(Y)$, then for all $s\in\mathbb{R}$ with $\mathbb{P}\left\{Y>s\right\}\neq 0$, $\mathbb{P}\left\{X\geq\mathbb{E}\left(Y:Y>s\right)\right\}\leq\mathbb{P}\left\{Y>s\right\}$. This bound is sharp in essentially the strictest possible sense: for any such $Y$ and $s$ there exists such an $X$ with $\mathbb{P}\left\{X\geq \mathbb{E}\left(Y:Y>s\right)\right\}=\mathbb{P}\left\{Y>s\right\}$.

Comments: 9 pages. Most of the material here was originally part of arXiv:2203.12523 and/or arXiv:1812.10938 and now stands as a paper on its own
Categories: math.PR
Subjects: 60E05, 60E15
Related articles: Most relevant | Search more
arXiv:2208.02581 [math.PR] (Published 2022-08-04)
A mass transport approach to the optimization of adapted couplings of real valued random variables
arXiv:1904.02264 [math.PR] (Published 2019-04-03)
Some Results on the Primary Order Preserving Properties of Stochastic Orders
arXiv:math/0612306 [math.PR] (Published 2006-12-12)
On recurrence of reflected random walk on the half-line. With an appendix on results of Martin Benda