arXiv Analytics

Sign in

arXiv:2207.00992 [math.GT]AbstractReferencesReviewsResources

On the Potential Function of the Colored Jones Polynomial with Arbitrary Colors

Shun Sawabe

Published 2022-07-03Version 1

We consider the potential function of the colored Jones polynomial for a link with arbitrary colors and obtain the cone-manifold structure for the link complement. In addition, we establish a relationship between a saddle point equation and hyperbolicity of the link complement. This provides evidence for the Chen-Yang conjecture on the link complement.

Comments: 21 pages, 18 figures
Categories: math.GT
Subjects: 57M25, 57M27, 57M50
Related articles: Most relevant | Search more
arXiv:1001.2680 [math.GT] (Published 2010-01-15)
Representations and the colored Jones polynomial of a torus knot
arXiv:1701.07818 [math.GT] (Published 2017-01-26)
Turaev-Viro invariants, colored Jones polynomials and volume
arXiv:1002.0126 [math.GT] (Published 2010-01-31)
An Introduction to the Volume Conjecture