arXiv Analytics

Sign in

arXiv:2206.03568 [cs.SY]AbstractReferencesReviewsResources

Control Barrier Functions and Input-to-State Safety with Application to Automated Vehicles

Anil Alan, Andrew J. Taylor, Chaozhe R. He, Aaron D. Ames, Gabor Orosz

Published 2022-06-07Version 1

Balancing safety and performance is one of the predominant challenges in modern control system design. Moreover, it is crucial to robustly ensure safety without inducing unnecessary conservativeness that degrades performance. In this work we present a constructive approach for safety-critical control synthesis via Control Barrier Functions (CBF). By filtering a hand-designed controller via a CBF, we are able to attain performant behavior while providing rigorous guarantees of safety. In the face of disturbances, robust safety and performance are simultaneously achieved through the notion of Input-to-State Safety (ISSf). We take a tutorial approach by developing the CBF-design methodology in parallel with an inverted pendulum example, making the challenges and sensitivities in the design process concrete. To establish the capability of the proposed approach, we consider the practical setting of safety-critical design via CBFs for a connected automated vehicle (CAV) in the form of a class-8 truck without a trailer. Through experimentation we see the impact of unmodeled disturbances in the truck's actuation system on the safety guarantees provided by CBFs. We characterize these disturbances and using ISSf, produce a robust controller that achieves safety without conceding performance. We evaluate our design both in simulation, and for the first time on an automotive system, experimentally.

Comments: 16 pages, 16 figures
Categories: cs.SY, cs.RO, eess.SY
Related articles: Most relevant | Search more
arXiv:2403.09865 [cs.SY] (Published 2024-03-14)
Safety-Critical Control for Autonomous Systems: Control Barrier Functions via Reduced-Order Models
arXiv:2403.02508 [cs.SY] (Published 2024-03-04)
Collision Avoidance and Geofencing for Fixed-wing Aircraft with Control Barrier Functions
arXiv:2303.10981 [cs.SY] (Published 2023-03-20)
Passivity-Preserving Safety-Critical Control using Control Barrier Functions