arXiv:2206.02589 [math.CO]AbstractReferencesReviewsResources
Proof of a conjecture involving derangements and roots of unity
Published 2022-06-06Version 1
Let $n>1$ be an odd integer. For any primitive $n$-th root $\zeta$ of unity in the complex field, via the Engenvector-eigenvalue Identity we show that $$\sum_{\tau\in D(n-1)}\mathrm{sign}(\tau)\prod_{j=1}^{n-1}\frac{1+\zeta^{j-\tau(j)}}{1-\zeta^{j-\tau(j)}} =(-1)^{\frac{n-1}{2}}\frac{((n-2)!!)^2}{n}, $$ where $D(n-1)$ is the set of all derangements of $1,\ldots,n-1$. This confirms a previous conjecture of Z.-W. Sun.
Comments: 5 pages
Related articles: Most relevant | Search more
arXiv:1012.2545 [math.CO] (Published 2010-12-12)
Proof of Andrews' conjecture on a_4φ_3 summation
arXiv:math/0508537 [math.CO] (Published 2005-08-26)
On a conjecture of Widom
arXiv:math/0610977 [math.CO] (Published 2006-10-31)
New results related to a conjecture of Manickam and Singhi