arXiv Analytics

Sign in

arXiv:2205.05118 [math.CO]AbstractReferencesReviewsResources

On the intersection density of the Kneser Graph $K(n,3)$

Karen Meagher, Andriaherimanana Sarobidy Razafimahatratra

Published 2022-05-10Version 1

A set $\mathcal{F} \subset \operatorname{Sym}(V)$ is \textsl{intersecting} if any two of its elements agree on some element of $V$. Given a finite transitive permutation group $G\leq \operatorname{Sym}(V)$, the \textsl{intersection density} $\rho(G)$ is the maximum ratio $\frac{|\mathcal{F}||V|}{|G|}$ where $\mathcal{F}$ runs through all intersecting sets of $G$. The \textsl{intersection density} $\rho(X)$ of a vertex-transitive graph $X = (V,E)$ is equal to $\max \left\{ \rho(G) : G \leq \operatorname{Aut}(X) \mbox{ is transitive} \right\}$. In this paper, we study the intersection density of the Kneser graph $K(n,3)$, for $n\geq 7$. The intersection density of $K(n,3)$ is determined whenever its automorphism group contains $\operatorname{PSL}_{2}(q)$ or $\operatorname{PGL}_{2}(q)$, with some exceptional cases depending on the congruence of $q$.

Related articles: Most relevant | Search more
arXiv:0909.2770 [math.CO] (Published 2009-09-15, updated 2010-09-27)
On b-continuity Of Kneser Graphs of type KG(2k+1,k)
arXiv:1707.09115 [math.CO] (Published 2017-07-28)
The critical group of the Kneser graph on $2$-subsets of an $n$-element set
arXiv:2307.09752 [math.CO] (Published 2023-07-19)
Neighbour-transitive codes in Kneser graphs