arXiv Analytics

Sign in

arXiv:2205.04874 [math.RT]AbstractReferencesReviewsResources

Highest weight categories of $\mathfrak{gl}(\infty)$-modules

Pablo Zadunaisky

Published 2022-05-10Version 1

We study a category of modules over $\mathfrak{gl}(\infty)$ analogous to category $\mathcal O$. We fix adequate Cartan, Borel and Levi-type subalgebras $\mathfrak h, \mathfrak b$ and $\mathfrak l$ with $\mathfrak l \cong \mathfrak{gl}(\infty)^n$, and define $\mathcal O_{\mathsf{LA}}^{\mathfrak l}{\mathfrak{gl}(\infty)}$ to be the category of $\mathfrak h$-semisimple, $\mathfrak n$-nilpotent modules that satisfy a large annihilator condition as $\mathfrak l$-modules. Our main result is that these are highest weight categories in the sense of Cline, Parshall and Scott. We compute the simple multiplicities of standard objects and the standard multiplicities in injective objects, and show that a form of BGG reciprocity holds in $\mathcal O_{\mathsf{LA}}^{\mathfrak l}{\mathfrak{gl}(\infty)}$. We also give a decomposition of $\mathcal O_{\mathsf{LA}}^{\mathfrak l}{\mathfrak{gl}(\infty)}$ into irreducible blocks.

Related articles: Most relevant | Search more
arXiv:1110.3851 [math.RT] (Published 2011-10-17)
Highest Weight Categories For Number Rings
arXiv:2012.15707 [math.RT] (Published 2020-12-31)
Abelian envelopes of exact categories and highest weight categories
arXiv:2307.02124 [math.RT] (Published 2023-07-05)
Peter-Weyl theorem for Iwahori groups and highest weight categories