arXiv Analytics

Sign in

arXiv:2205.02804 [math.FA]AbstractReferencesReviewsResources

Further stability results of the functional equation $f(2x+y)+f\left(\frac{x+y}{2}\right) =\frac{2f(x)f(y)}{f(x)+f(y)}+\frac{2f(x+y)f(y-x)}{3f(y-x)-f(x+y)}$

Idir Sadani

Published 2022-05-05Version 1

In this paper, we investigate the generalized Hyers-Ulam stability of the following reciprocal functional equation \begin{equation*}f(2x+y)+f\left(\frac{x+y}{2}\right) =\frac{2f(x)f(y)}{f(x)+f(y)}+\frac{2f(x+y)f(y-x)}{3f(y-x)-f(x+y)}\end{equation*} in non-Archimedean space using a direct method.

Related articles: Most relevant | Search more
arXiv:1902.01677 [math.FA] (Published 2019-02-05)
Stability results of properties related to the Bishop-Phelps-Bollobás property for operators
arXiv:2206.03561 [math.FA] (Published 2022-05-05)
Stability of a new generalized reciprocal type functional equation
arXiv:math/0502205 [math.FA] (Published 2005-02-10)
On some stability results of frame atomic decompositions