arXiv:2205.00675 [astro-ph.GA]AbstractReferencesReviewsResources
Using EAGLE simulations to study the effect of observational constraints on the determination of HI asymmetries in galaxies
P. V. Bilimogga, K. A. Oman, M. A. W. Verheijen, J. M. van der Hulst
Published 2022-05-02Version 1
We investigate the effect of observational constraints such as signal-to-noise, resolution and column density level on the HI morphological asymmetry ($\mathrm{A}_\mathrm{mod}$) and the effect of noise on the HI global profile ($\mathrm{A}_\mathrm{flux}$) asymmetry indices. Using mock galaxies from the EAGLE simulations we find an optimal combination of the observational constraints that are required for robust measurement of the $\mathrm{A}_\mathrm{mod}$ value of a galaxy: a column density threshold of $5\times10^{19}cm^{-2}$ or lower at a minimal signal-to-noise of 3 and a galaxy resolved with at least 11 beams. We also use mock galaxies to investigate the effect of noise on the $\mathrm{A}_\mathrm{flux}$ values and conclude that a global profile with signal-to-noise ratio greater than 5.5 is required to achieve a robust measurement of asymmetry. We investigate the relation between $\mathrm{A}_\mathrm{mod}$ and $\mathrm{A}_\mathrm{flux}$ indices and find them to be uncorrelated which implies that $\mathrm{A}_\mathrm{flux}$ values cannot be used to predict morphological asymmetries in galaxies.