arXiv Analytics

Sign in

arXiv:2204.11001 [math.AP]AbstractReferencesReviewsResources

Incompressible limit for a fluid mixture

Pierre-Etienne Druet

Published 2022-04-23Version 1

In this paper we discuss the incompressible limit for multicomponent fluids in the isothermal ideal case. Both a direct limit-passage in the equation of state and the low Mach-number limit in rescaled PDEs are investigated. Using the relative energy inequality, we obtain convergence results for the densities and the velocity-field under the condition that the incompressible model possesses a sufficiently smooth solution, which is granted at least for a short time. Moreover, in comparison to single-component flows, uniform estimates and the convergence of the pressure are needed in the multicomponent case because the incompressible velocity field is not divergence-free. We show that certain constellations of the mobility tensor allow to control gradients of the entropic variables and yield the convergence of the pressure in L1.

Related articles: Most relevant | Search more
arXiv:0912.4121 [math.AP] (Published 2009-12-21)
Convergence of approximate deconvolution models to the filtered Navier-Stokes Equations
arXiv:1205.5563 [math.AP] (Published 2012-05-24, updated 2013-04-30)
On the convergence of statistical solutions of the 3D Navier-Stokes-$α$ model as $α$ vanishes
arXiv:1206.1483 [math.AP] (Published 2012-06-07)
Convergence of approximate deconvolution models to the mean Magnetohydrodynamics Equations: Analysis of two models