arXiv:2204.08635 [math.FA]AbstractReferencesReviewsResources
Herz-slice spaces and applications
Yuan Lu, Jiang Zhou, Songbai Wang
Published 2022-04-19Version 1
Let $\alpha\in\mathbb R^n$, $t\in(0,\infty)$, $p\in(0,\infty]$, $r\in(1,\infty)$ and $q\in[1,\infty]$. We introduce the homogeneous Herz-slice space $(\dot KE_{q,r}^{\alpha,p})_t(\mathbb R^n)$, the non-homogeneous Herz-slice space $(KE_{q,r}^{\alpha,p})_t(\mathbb R^n)$ and show some properties of them. As an application, the bounds for the Hardy--Littlewood maximal operator on these spaces is considered.
Comments: 18 papes, 0 figures
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1507.01431 [math.FA] (Published 2015-07-06)
Estimates on the norm of polynomials and applications
arXiv:0712.1302 [math.FA] (Published 2007-12-10)
Spectrum of the product of Toeplitz matrices with application in probability
arXiv:1407.5216 [math.FA] (Published 2014-07-19)
Extensions of Rubio de Francia's extrapolation theorem in variable Lebesgue space and application