arXiv Analytics

Sign in

arXiv:2203.12685 [astro-ph.SR]AbstractReferencesReviewsResources

Prospects of measuring a metallicity trend and spread in globular clusters from low-resolution spectroscopy

Martina Baratella, Deepthi S. Prabhu, Luiz A. Silva-Lima, Philippe Prugniel

Published 2022-03-23Version 1

The metallicity spread, or the metallicity trend along the evolutionary sequence of a globular cluster, is a rich source of information to help understand the cluster physics (e.g. multiple populations) and stellar physics (e.g. atomic diffusion). Low-resolution integral-field-unit spectroscopy in the optical with the MUSE is an attractive prospect if it can provide these diagnostics because it allows us to extract spectra of a large fraction of the cluster stars. We investigate the possibilities of full-spectrum fitting to derive stellar parameters and chemical abundances at low spectral resolution (R~2000). We reanalysed 1584 MUSE spectra of 1061 stars above the turn-off of NGC 6397 using FERRE and employing two different synthetic libraries. We derive the equivalent iron abundance \fehe for fixed values of \afe. We find that (i) the interpolation schema and grid mesh are not critical for the precision, metallicity spread, and trend; (ii) with the two grids, \fehe increases by ~0.2 dex along the sub-giant branch, starting from the turn-off of the main sequence; (iii) restricting the wavelength range to the optical decreases the precision significantly; and (iv) the precision obtained with the synthetic libraries is lower than the precision obtained previously with empirical libraries. Full-spectrum fitting provides reproducible results that are robust to the choice of the reference grid of synthetic spectra and to the details of the analysis. The \fehe increase along the sub-giant branch is in stark contrast with the nearly constant iron abundance previously found with empirical libraries. The precision of the measurements (0.05 dex on \fehe) is currently not sufficient to assess the intrinsic chemical abundance spreads, but this may change with deeper observations. Improvements of the synthetic spectra are still needed to deliver the full possibilities of full-spectrum fitting.

Comments: 18 pages, 8 figures + 1 appendix figure, accepted for publication in A&A
Categories: astro-ph.SR, astro-ph.GA
Related articles: Most relevant | Search more
arXiv:1508.05291 [astro-ph.SR] (Published 2015-08-21)
Discovery of near-ultraviolet counterparts to millisecond pulsars in the globular cluster 47 Tucanae
arXiv:1903.10127 [astro-ph.SR] (Published 2019-03-25)
Fluorine Abundances in the Globular Cluster M 4
arXiv:1908.06905 [astro-ph.SR] (Published 2019-08-19)
Spectroscopic studies of stellar populations in globular clusters and field stars: implications for globular cluster and Milky Way halo formation