arXiv Analytics

Sign in

arXiv:2203.12255 [astro-ph.GA]AbstractReferencesReviewsResources

ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions - X. Chemical differentiation among the massive cores in G9.62+0.19

Y. P. Peng, T. Liu, S. -L. Qin, T. Baug, H. -L. Liu, K. Wang, G. Garay, C. Zhang, L. -F. Chen, C. W. Lee, M. Juvela, D. L. Li, K. Tatematsu, X. -C. Liu, J. -E. Lee, G. Luo, L. Dewangan, Y. -F. Wu, L. Zhang, L. Bronfman, J. X. Ge, M. Y. Tang, Y. Zhang, F. -W. Xu, Y. Wang, B. Zhou

Published 2022-03-23Version 1

Investigating the physical and chemical structures of massive star-forming regions is critical for understanding the formation and the early evolution of massive stars. We performed a detailed line survey toward six dense cores named as MM1, MM4, MM6, MM7, MM8, and MM11 in G9.62+0.19 star-forming region resolved in ALMA band 3 observations. Toward these cores, about 172 transitions have been identified and attributed to 16 species including organic Oxygen-, Nitrogen-, Sulfur-bearing molecules and their isotopologues. Four dense cores MM7, MM8, MM4, and MM11 are line rich sources. Modeling of these spectral lines reveals the rotational temperature in a range of 72$-$115~K, 100$-$163~K, 102$-$204~K, and 84$-$123~K for the MM7, MM8, MM4, and MM11, respectively. The molecular column densities are 1.6 $\times$ 10$^{15}$ $-$ 9.2 $\times$ 10$^{17}$~cm$^{-2}$ toward the four cores. The cores MM8 and MM4 show chemical difference between Oxygen- and Nitrogen-bearing species, i.e., MM4 is rich in oxygen-bearing molecules while nitrogen-bearing molecules especially vibrationally excited HC$_{3}$N lines are mainly observed in MM8. The distinct initial temperature at accretion phase may lead to this N/O differentiation. Through analyzing column densities and spatial distributions of O-bearing Complex Organic Molecules (COMs), we found that C$_{2}$H$_{5}$OH and CH$_{3}$OCH$_{3}$ might have a common precursor, CH$_{3}$OH. CH$_{3}$OCHO and CH$_{3}$OCH$_{3}$ are likely chemically linked. In addition, the observed variation in HC$_{3}$N and HC$_{5}$N emission may indicate that their different formation mechanism at hot and cold regions.

Related articles: Most relevant | Search more
arXiv:2111.02231 [astro-ph.GA] (Published 2021-11-03)
ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -- V. Hierarchical fragmentation and gas dynamics in IRDC G034.43+00.24
Hong-Li Liu et al.
arXiv:2206.08505 [astro-ph.GA] (Published 2022-06-17)
ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -- XI. From inflow to infall in hub-filament systems
arXiv:2208.09877 [astro-ph.GA] (Published 2022-08-21)
ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -- XII: Fragmentation and multi-scale gas kinematics in protoclusters G12.42+0.50 and G19.88-0.53
Anindya Saha et al.