arXiv:2203.10160 [math.GT]AbstractReferencesReviewsResources
A Geometric Interpretation of Ranicki Duality
Published 2022-03-18Version 1
Our main theorem provides an $(R,K)$ chain isomorphism: $ T\Delta^*X\cong C(X_K) $. Here $T$ is the Ranicki Duality functor; $\Delta^*X$ is the simplicial cochain complex of the simplicial complex $X$, with control map $\pi:X \to K$ and $C(X_K) $ is the cellular chain complex of a CW complex $X_K$.
Comments: 14 pages
Categories: math.GT
Related articles: Most relevant | Search more
arXiv:2107.08851 [math.GT] (Published 2021-07-19)
Cellular chain complexes of universal covers of some 3-manifolds
arXiv:1011.3139 [math.GT] (Published 2010-11-13)
Geometric interpretation of simplicial formulas for the Chern-Simons invariant
arXiv:1809.09670 [math.GT] (Published 2018-09-25)
A Geometric Interpretation of the $p$-adic Littlewood Conjecture