arXiv:2202.10379 [cond-mat.dis-nn]AbstractReferencesReviewsResources
(Dis)assortative Partitions on Random Regular Graphs
Freya Behrens, Gabriel Arpino, Yaroslav Kivva, Lenka Zdeborová
Published 2022-02-21, updated 2022-03-17Version 2
We study the problem of assortative and disassortative partitions on random $d$-regular graphs. Nodes in the graph are partitioned into two non-empty groups. In the assortative partition every node requires at least $H$ of their neighbors to be in their own group. In the disassortative partition they require less than $H$ neighbors to be in their own group. Using the cavity method based on analysis of the Belief Propagation algorithm we establish for which combinations of parameters $(d,H)$ these partitions exist with high probability and for which they do not. For $H>\lceil \frac{d}{2} \rceil $ we establish that the structure of solutions to the assortative partition problems corresponds to the so-called frozen-1RSB. This entails a conjecture of algorithmic hardness of finding these partitions efficiently. For $H \le \lceil \frac{d}{2} \rceil $ we argue that the assortative partition problem is algorithmically easy on average for all $d$. Further we provide arguments about asymptotic equivalence between the assortative partition problem and the disassortative one, going trough a close relation to the problem of single-spin-flip-stable states in spin glasses. In the context of spin glasses, our results on algorithmic hardness imply a conjecture that gapped single spin flip stable states are hard to find which may be a universal reason behind the observation that physical dynamics in glassy systems display convergence to marginal stability.