arXiv Analytics

Sign in

arXiv:2201.13252 [math.RT]AbstractReferencesReviewsResources

Homological properties of 0-Hecke modules for dual immaculate quasisymmetric functions

Seung-Il Choi, Young-Hun Kim, Sun-Young Nam, Young-Tak Oh

Published 2022-01-31Version 1

Let $n$ be a nonnegative integer. For each composition $\alpha$ of $n$, Berg $\textit{et al.}$ introduced a cyclic indecomposable $H_n(0)$-module $\mathcal{V}_\alpha$ with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study $\mathcal{V}_\alpha$'s from the homological viewpoint. To be precise, we construct a minimal projective presentation of $\mathcal{V}_\alpha$ and a minimal injective presentation of $\mathcal{V}_\alpha$ as well. Using them, we compute ${\rm Ext}^1_{H_n(0)}(\mathcal{V}_\alpha, {\bf F}_\beta)$ and ${\rm Ext}^1_{H_n(0)}( {\bf F}_\beta, \mathcal{V}_\alpha)$, where ${\bf F}_\beta$ is the simple $H_n(0)$-module attached to a composition $\beta$ of $n$. We also compute ${\rm Ext}_{H_n(0)}^i(\mathcal{V}_\alpha,\mathcal{V}_{\beta})$ when $i=0,1$ and $\beta \le_l \alpha$, where $\le_l$ represents the lexicographic order on compositions.

Related articles: Most relevant | Search more
arXiv:2008.06830 [math.RT] (Published 2020-08-16)
The projective cover of tableau-cyclic indecomposable $H_n(0)$-modules
arXiv:1403.1527 [math.RT] (Published 2014-03-06, updated 2015-08-20)
Modules of the 0-Hecke algebra and quasisymmetric Schur functions
arXiv:2501.11304 [math.RT] (Published 2025-01-20)
Distinguished filtrations of the $0$-Hecke modules for dual immaculate quasisymmetric functions