arXiv Analytics

Sign in

arXiv:2201.08544 [math.DG]AbstractReferencesReviewsResources

Liouville type theorem for (F;F')p-harmonic maps on foliations

Xueshan Fu, Seoung Dal Jung

Published 2022-01-21Version 1

In this paper, we study $(\mathcal F,\mathcal F')_{p}$-harmonic maps between foliated Riemannian manifolds $(M,g,\mathcal F)$ and $(M',g',\mathcal F')$. A $(\mathcal F,\mathcal F')_{p}$-harmonic map $\phi:(M,g,\mathcal F)\to (M', g',\mathcal F')$ is a critical point of the transversal $p$-energy $E_{B,p}(\phi)$, which is a generalization of $(\mathcal F,\mathcal F')$-harmonic map. Precisely, we give the first and second variational formulas for $(\mathcal F,\mathcal F')_{p}$-harmonic maps. We also investigate the generalized Weitzenb\"ock type formula and the Liouville type theorem for $(\mathcal F,\mathcal F')_{p}$-harmonic map.

Comments: 16pages. arXiv admin note: text overlap with arXiv:1109.3932
Categories: math.DG
Subjects: 53C12, 57R30, 58E20
Related articles: Most relevant | Search more
arXiv:1010.2986 [math.DG] (Published 2010-10-14, updated 2013-05-01)
On the partial Ricci curvature of foliations
arXiv:1204.5430 [math.DG] (Published 2012-04-24, updated 2015-02-05)
On the homotopy Dirichlet problem for p-harmonic maps
arXiv:1211.2899 [math.DG] (Published 2012-11-13, updated 2016-02-23)
Liouville properties for p-harmonic maps with finite q-energy