arXiv Analytics

Sign in

arXiv:2201.00740 [math.RT]AbstractReferencesReviewsResources

The index with respect to a rigid subcategory of a triangulated category

Peter Jørgensen, Amit Shah

Published 2022-01-03, updated 2023-10-16Version 3

Palu defined the index with respect to a cluster tilting object in a suitable triangulated category, in order to better understand the Caldero-Chapoton map that exhibits the connection between cluster algebras and representation theory. We push this further by proposing an index with respect to a contravariantly finite, rigid subcategory, and we show this index behaves similarly to the classical index. Let $\mathcal{C}$ be a skeletally small triangulated category with split idempotents, which is thus an extriangulated category $(\mathcal{C},\mathbb{E},\mathfrak{s})$. Suppose $\mathcal{X}$ is a contravariantly finite, rigid subcategory in $\mathcal{C}$. We define the index $\mathrm{ind}_{\mathcal{X}}(C)$ of an object $C\in\mathcal{C}$ with respect to $\mathcal{X}$ as the $K_{0}$-class $[C]_{\mathcal{X}}$ in Grothendieck group $K_{0}(\mathcal{C},\mathbb{E}_{\mathcal{X}},\mathfrak{s}_{\mathcal{X}})$ of the relative extriangulated category $(\mathcal{C},\mathbb{E}_{\mathcal{X}},\mathfrak{s}_{\mathcal{X}})$. By analogy to the classical case, we give an additivity formula with error term for $\mathrm{ind}_{\mathcal{X}}$ on triangles in $\mathcal{C}$. In case $\mathcal{X}$ is contained in another suitable subcategory $\mathcal{T}$ of $\mathcal{C}$, there is a surjection $Q\colon K_{0}(\mathcal{C},\mathbb{E}_{\mathcal{T}},\mathfrak{s}_{\mathcal{T}}) \twoheadrightarrow K_{0}(\mathcal{C},\mathbb{E}_{\mathcal{X}},\mathfrak{s}_{\mathcal{X}})$. Thus, in order to describe $K_{0}(\mathcal{C},\mathbb{E}_{\mathcal{X}},\mathfrak{s}_{\mathcal{X}})$, it suffices to determine $K_{0}(\mathcal{C},\mathbb{E}_{\mathcal{T}},\mathfrak{s}_{\mathcal{T}})$ and $\operatorname{Ker} Q$. We do this under certain assumptions.

Comments: V1: 26 pages. V2: 26 pages, minor title change, added to Remark 4.13. V3: Several changes made following a review. We now use the notation add(X*Y) for the extension subcategory previously denoted X*Y
Categories: math.RT, math.CT, math.KT
Subjects: 16E20, 18E05, 18G80
Related articles: Most relevant | Search more
arXiv:2208.07808 [math.RT] (Published 2022-08-16)
Stratifying systems and Jordan-Hölder extriangulated categories
arXiv:2003.11852 [math.RT] (Published 2020-03-26)
Complete cohomology for extriangulated categories
arXiv:2501.07140 [math.RT] (Published 2025-01-13)
Relative quasi-Gorensteinness in extriangulated categories