arXiv Analytics

Sign in

arXiv:2111.09603 [math.AP]AbstractReferencesReviewsResources

A comparison principle for the Lane-Emden equation and applications to geometric estimates

Lorenzo Brasco, Francesca Prinari, Anna Chiara Zagati

Published 2021-11-18Version 1

We prove a comparison principle for positive supersolutions and subsolutions to the Lane-Emden equation for the $p-$Laplacian, with subhomogeneous power in the right-hand side. The proof uses variational tools and the result applies with no regularity assumptions, both on the set and the functions. We then show that such a comparison principle can be applied to prove: uniqueness of solutions; sharp pointwise estimates for positive solutions in convex sets; localization estimates for maximum points and sharp geometric estimates for generalized principal frequencies in convex sets.

Related articles: Most relevant | Search more
arXiv:1207.6375 [math.AP] (Published 2012-07-26, updated 2012-07-30)
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
arXiv:0904.3022 [math.AP] (Published 2009-04-20)
Mixed norm estimates of Schrödinger waves and their applications