arXiv:2111.06072 [math.NT]AbstractReferencesReviewsResources
Asymptotic behavior of the Hurwitz-Lerch multiple zeta function at non-positive integer points
Hideki Murahara, Tomokazu Onozuka
Published 2021-11-11, updated 2021-12-02Version 2
We give a result on the asymptotic behavior of the Hurwitz-Lerch multiple zeta functions near non-positive integer points by using the Apostol-Bernoulli polynomials. From this result, we can evaluate limit values at non-positive integer points.
Related articles: Most relevant | Search more
arXiv:1206.0286 [math.NT] (Published 2012-06-01)
The Asymptotic Behavior of Compositions of the Euler and Carmichael Functions
arXiv:2506.20150 [math.NT] (Published 2025-06-25)
Values at non-positive integers of partially twisted multiple zeta-functions II
arXiv:2006.11260 [math.NT] (Published 2020-06-19)
Vectors of type II Hermite-Padé approximations and a new linear independence criterion