arXiv Analytics

Sign in

arXiv:2111.02077 [math.RT]AbstractReferencesReviewsResources

Periodicity for subquotients of the modular category $\mathcal{O}$

Peter Fiebig

Published 2021-11-03, updated 2022-02-09Version 2

In this paper we study the category $\mathcal{O}$ over the hyperalgebra of a reductive algebraic group in positive characteristics. For any locally closed subset $\mathcal{K}$ of weights we define a subquotient $\mathcal{O}_{[\mathcal{K}]}$ of $\mathcal{O}$. It has the property that its simple objects are parametrized by elements in $\mathcal{K}$. We then show that $\mathcal{O}_{[\mathcal{K}]}$ is equivalent to $\mathcal{O}_{[\mathcal{K}+p^l\gamma]}$ for any dominant weight $\gamma$ if $l>0$ is an integer such that $\mathcal{K}\cap (\mathcal{K}+p^l\eta)=\emptyset$ for all dominant weights $\eta$. This allows one, for example, to restrict attention to subquotients inside the dominant (or the antidominant) chamber.

Comments: 14 pages; second version without essential changes
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:math/0612768 [math.RT] (Published 2006-12-26)
Sum formulas for reductive algebraic groups
arXiv:1201.6473 [math.RT] (Published 2012-01-31, updated 2013-02-19)
Modular Categories Associated to Unipotent Groups
arXiv:1408.3360 [math.RT] (Published 2014-08-14)
On the crystalline cohomology of Deligne-Lusztig varieties