arXiv:2110.14640 [math.AP]AbstractReferencesReviewsResources
System with weights and with critical Sobolev exponent
Published 2021-10-27, updated 2022-03-02Version 2
In this paper, we investigate the minimization problem: $$ \inf_{ \displaystyle{\begin{array}{lll} u \in H_0^1(\Omega), v \in H_0^1(\Omega),\\ \quad \| u \|_{L^{q}} =1, \quad \| v \|_{L^{q}} = 1 \end{array}}} \left[ \frac{1}{2} \int_{\Omega} a(x) \vert \nabla u \vert^2dx + \displaystyle{ \frac{1}{2} \int_{\Omega} b(x) \vert \nabla v \vert^2dx } - \lambda \displaystyle{\int_{\Omega} uv dx} \right] $$ with $q=\frac{2N}{N-2}$, $ N \geq 4$, $a$ and $ b $ are two continuous positive weights. We show the existence of solutions of the previous minimizing problem under some conditions on $a$, $b$, the dimension of space and the parameter $\lambda$.
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:2101.00222 [math.AP] (Published 2021-01-01)
A study of biharmonic equation involving nonlocal terms and critical Sobolev exponent
arXiv:1608.07689 [math.AP] (Published 2016-08-27)
A minimization problem with free boundary related to a cooperative system
arXiv:1603.05641 [math.AP] (Published 2016-03-17)
A non-variational system involving the critical Sobolev exponent. The radial case